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Abstract 

We present a summary of GAIA, an interactive environment for designing game-playing agents. A game-
playing agent in GAIA contains not only knowledge about the game world, but also a model of its own 
goals, methods and knowledge. If and when the agent fails to achieve a goal, it uses its self-model to reason 
about its goals, identifies repairs to its design, and retrospectively adapts itself. We illustrate GAIA through 
experiments in designing agents that play a version of the turn-based strategy game called Freeciv. 

1. Introduction 

The GAIA project explores the use of teleology in modeling agents that play turn-based strategy 
games. Its overall hypothesis is that the use of teleology supports the diagnosis and revision of 
such agents to better adapt them to their game environments. Specific research questions include 
how to represent agent goals, how to relate the goals to the means by which the goals are 

accomplished and how to reason over the models in support of diagnosis and adaptation. 
GAIA itself is an interactive environment for designing game-playing agents. In GAIA, a 

designer interactively designs a game-playing agent in a high-level agent modeling language 
called TMKL2. The designed agent contains not only knowledge about the game world, but also 
models of its goals, methods and knowledge. Given the model of the agent, GAIA automatically 
compiles the agent program code and executes the agent in the game world. If and when the agent 

fails to achieve a goal specified in the model, a meta-reasoning component called REM uses the 
agent’s model to reason about its goals and failures, identifies repairs to its design, and 
retrospectively adapts the agent. We evaluate GAIA, TMKL2 and REM through experiments in 
designing agents that play parts of the turn-based strategy game called Freeciv1. In this paper, we 

                                                 
1 http://freeciv.wikia.com/ 
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present a summary of the GAIA project in order to build a connection with the newly formed 
Cognitive Systems and Goal Reasoning communities.  

2. TMKL2 

TMKL2 is an agent modeling language that is used to express the teleology of an agent’s design 
and the means by which the teleology is realized. TMKL2 includes vocabulary for specifying 
agent goals, the mechanisms to accomplish the goals, and the agent's knowledge of its internal 

design and its external environment. GAIA realizes TMKL2 models using an interpreter. When 
used to model a Freeciv agent, the interpreter is capable of executing a model in conjunction with  
Freeciv's server program to play the game. GAIA assumes that the division between the agent’s 
model and external parts is clearly defined, and that this division takes the form of an 
(Application Programming Interface) API to the external code. GAIA also makes an explicit 
distinction between adaptation-time modeling of the agent and run-time execution of the adapted 

agent: Adaptation takes place on a model of the agent and then the model is interpreted to effect 
agent behavior in the game world. 

1.1. Goals  

TMKL2 comprises three sublanguages for modeling Goals, Mechanisms and 
Environment, corresponding to the Tasks, Methods and Knowledge portions of the earlier 
TMKL language [Murdock & Goel 2008], respectively. The first sublanguage describes the 
agent's goals. A Goal expresses a reason that the agent does what it does, in terms of its intended 
externally visible effects on the agent’s world. Goals may be parameterized, enabling the agent 
to target specific elements of its Environment, such as, for example, a specific city. A Goal is 
expressed via a pair of logical expressions describing the precondition for Goal accomplishment 
(called its Given condition) and the expected effect of Goal accomplishment on the agent's 
Environment (its Makes condition). The final element of a Goal specification is a reference 
to the means by which the Goal is to be accomplished. In this version of TMKL2, each Goal is 
associated with the single Mechanisms by which it is to be achieved. 

1.2. Mechanisms 

The Mechanism portion of a TMKL2 model describes how the agent accomplishes its Goals. 
There are two kinds of Mechanisms, Organizers and Operations, that are each defined 
in terms of two logical expressions describing their precondition for execution (Requires 
conditions) and their effect (Provides condition). An Organizer mechanism is defined as a 
finite state machine comprising States and Transitions. Start, failure and success 
States are all explicitly indicated. States, in turn, refer to subGoals, enabling hierarchical 
refinement of an agent's specification. Transitions may be conditional (dependent on a 
DataCondition) with respect to the agents current perception of the world, as expressed in its 
Environment. The other kind of mechanism is an Operation. Operations are parameterized 
invocations of computational resources provided to the software agent via its API to external 
software, such as the Freeciv server. That is, each Operation models one of the agent's 
computational capabilities. 

1.3. Environment 
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A TMKL2 program includes a description of the agent's understanding of itself and the world in 
which its exists. In particular, the agent's Environment comprises a set of typed Instances 
and Triples (3-tuples) relating the Instances to each other. In order to describe 

Instances and Triples, TMKL2 provides two modeling constructs, Concepts and 
Relations. A Concept is a description of a set of similar Instances. It is defined in terms 
of a set of typed Properties. Moreover, Concepts are organized in a specialization 
hierarchy promoting compositionality and reuse. There is a built-in Concept called Concept. 
When a TMKL2 model is constructed, Instances of Concept are automatically added to it 
for each defined Concept, enabling reflection by the agent over its own definition. A 

Relation describes a set of Triples allowing the modeling of associations among 
Concepts. In particular, an Instance of one Concept can be related to Instance of 
another via a Triple. 

1.4. Semantics 

A TMKL2 model of an agent connects the Goals of the agent to the Mechanisms by which 
the Goals are accomplished. The program is declarative in the sense that all behavior is defined 
in terms of logical expressions (Given, Makes, Requires, Provides). 
Consequentially, one semantic interpretation of a TMKL2 program is that it declaratively 
describes the behavior that a software agent must exhibit in order for it to accomplish a set of top-

level Goals. TMKL2 programs are not just descriptive, however: They can be used to actually 
control the modeled agent. This requires an operational semantics of TMKL2: A TMKL2 model 
prescribes the detailed behavior of the agent in the world. Operationally, a TMKL2 Model can be 
interpreted as a hierarchy of finite state machines controlling communication with the external 
software with which the agent interacts. Superior state machines in the hierarchy effect the 
accomplishment of superior Goals. FSMs corresponding to Goals without any subGoals are 

called leaf FSMs. All state machines execute synchronously; that is, at any given time, each 
machine is in a specific State. At the next virtual clock tick, all pending DataConditions 
for active leaf machines are evaluated, and the outgoing Transitions evaluating to true are 
traversed, resulting in entry into new States. Upon entry into a State, the corresponding 
subGoal and its  Mechanism are interpreted. Mechanism interpretation ultimately resolves 
into Operation invocations and updates to the Environment. After all invocations have 

been processed, the Environment is updated to reflect any changes to the agent’s run-time data 
structures made by the invocations. Interpretation terminates if the Organizer for the top-level 
Goal enters either a success or failure State. 

1.5. An Example of a TMKL2 Model of a Freeciv Agent 

Figure 1 presents part of the model of an agent, called Alice, capable of playing a simplified 
version of Freeciv. The figure illustrates a visual syntax for TMKL2. The partial model includes 
Alice's top level Goals and Organizers. In particular, the top (green) rectangle of the 
diagram denotes Alice's top-level Goal of collecting gold pieces. Contained within this rectangle 
is another (slate blue), depicting an Organizer comprising three States—an initial State 
(black circle), a subGoal reference (gray) and a final State (yellow). The subGoal itself is 

shown as the rightmost of the two (orange) rectangles on the second level. Its Organizer, in 
turn, refers to two subGoals—one that continually mints more gold until enough has been 
produced and the other determining when to end the game. The bottom two rectangles contain  
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Figure 1: A portion of the TMKL2 model of Alice, an agent that plays a part of Freeciv. 

 
Operations (gray), responsible for interacting with the Freeciv server. Complementing the 
Goals and Mechanisms shown in the figure is Alice's Environment (not shown). Example 
Concepts represented by Instances in the Environment include City, Tile, 

Player, and Unit. 

2. GAIA  

TMKL2 models can be constructed, modified and executed using the GAIA interactive 
development environment. GAIA is written in the Java programming language and is built using 
the Eclipse2 software development environment. 

2.1 The GAIA Architecture 

The conceptual architecture for GAIA is presented in Figure 2. In the center left of the figure is 
SAGi, the GAIA user interface. REM is the reasoning module responsible for adapting models. 
Also part of GAIA is the model manager responsible for encapsulating access to agent models 
and persisting them to permanent storage. In-memory representation of TMKL2 models take the 
form of Java objects that are interpreted by the TMKL2 interpreter, which interacts with the 
world via the Runtime Communications Manager and associated queues. 

SAGi invokes the TMKL2 interpreter to execute a model and thereby interact with the Freeciv 
server. The interpreter walks the TMKL2 tree of state machines iteratively until the agent either 
succeeds or fails to achieve its top-level Goals. When the interpreter attempts to accomplish a 
subGoal whose Mechanism is an Operation, it must place into the Operation Request 
Queue a request to the Freeciv server to execute a game action, encoding parameters as necessary. 

                                                 
2 http://www.eclipse.org/ 
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Figure 2: The Conceptual Architecture of GAIA. 

 

 REM is the other major component of GAIA. REM, when given an agent model and a 
situation—either a failed Goal or an altered Environment—produces an updated agent model 
engineered either to successfully accomplish the Goal or to take advantage of the new 
knowledge in the Environment. To achieve retrospective adaptation, REM performs three 
steps: localization (determining which of an agent's subGoals and associated Mechanisms 
were inadequate to accomplish the agent's overall Goal), transformation (devising an alternative 

Goal), and realization (providing/altering a Mechanism to accomplish the alternative Goal). 
Localization is accomplished in REM using a heuristic to find a low-level State in an 
Organizer such that the state's Provides condition suffices to accomplish the failing Goal. 
Further, the detected State must have a failing precondition (Requires condition). The 
presumption is that the State had not been reached, and, if it had been reached, then the agent 
would have succeeded.  

 Realization and transformation are accomplished by matching the failing situation against a 
library of adaptation plans, choosing a candidate transformation from the library and applying the 
result to the agent's model to produce a revised model. REM sits atop the Powerloom3 knowledge 
representation and reasoning system. Powerloom supports automatic classification (truth 
maintenance) as well as natural deduction. TMKL2 logical expressions are easily mapped to/from 
Powerloom, and REM algorithms are easily expressed in Powerloom's variant of first-order logic. 

3. Adaptation Scenarios and Results 

To validate our approach to model-based adaptation, we have conducted several experiments, 
each involving variants of the Alice agent depicted in Figure 1. In the experiments, Alice plays a 

simplified variant of Freeciv against other agents. The simplified game consists of two agents. 

                                                 
3 http://www.isi.edu/isd/LOOM/PowerLoom/ 
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Each agent controls a civilization and is responsible for its government, economy, citizen morale, 
and military. Each civilization has one city, citizens in that city, and a number of warriors. Each 
game tile yields a quantity of food, production, and trade points each turn of the game. Food 

points feed a city's civilians; production points are used to support existing warriors or generate 
new warriors; and trade points are distributed among luxury, tax, and science resources. Initially 
both players start out in year 4000BC, with fifty gold pieces, zero warriors, and one worker that 
collects resources from a nearby tile. A city is either producing a warrior or collecting gold pieces 
on any given turn. Alice can win by collecting a specified number of pieces of gold, and the other 
agent can win by capturing Alice's city. An experiment consists of running Alice against its 

opponent and noting the results. Then, REM is tasked by the experimenter to adapt Alice, and the 
game is rerun. In order to best understand the results, FreeCiv was run deterministically 
throughout the experiments. 

3.1. Experiment #1 

The purpose of the first experiment we conducted was to test whether REM could make a trivial 
adaptation to improve Alice's performance versus Freeciv's built-in robot player. In general, a 
player of this reduced game has to make a decision about allocating resources between collecting 
gold and creating warriors to defend its city. At the beginning of the first experiment, Alice's 
strategy was to devote all of her resources to the former pursuit. An obvious adaptation is to 

adjust Alice to balance her resource allocation, and the first experiment tested whether REM 
could make this adaptation. In the experiment Alice played against Freeciv's robot player, which 
we call Frank, configured at its highest skill level. Although Alice had knowledge that Frank 
could win by capturing her city, she was unaware that Frank had more powerful weaponry and 
more production capacity than she had. When played against Frank, unadapted Alice directly 
succumbed to his attacking chariots, legions, and horsemen. Before losing, Alice was able to 

acquire 175 units of gold and lived for 3075 years. However, Alice failed to acquire sufficient 
gold to accomplish her Goal, thereby requiring retrospective adaptation. In this experiment, no 
transformation was needed. That is, the failure was that an Organizer rather than a Goal was 
flawed. Realizing a replacement Organizer took place by interjecting a new State, whose 
success would satisfy the preconditions of a problem State. The new State was created by 
first searching a small library of generic Goal patterns to see if any satisfy the preconditions of 

the problem State. After an instantiated Goal pattern was found it was assigned as the Goal 
of the new State. This new State was then inserted into the localized Organizer just prior 
to the problem State. This guarantees the problem State's precondition is satisfied upon its 
visitation. In Experiment #1, the new State was added with a Goal to build additional 
warriors. This Goal increases the defense of Alice's city if she is visibly outgunned on the game 
map. After performing this adaptation, the new agent, Alice', was tested against Frank. While still 

outgunned, Alice' fared better in longevity and defense. She lasted 3125 years and killed one of 
Franks powerful attacking units. Because some of her resources had been allocated to defense, 
she fared worse in gold acquisition, acquiring only 147 units. The lesson learned was that 
compensating for a well-understood limitation could be accomplished by making use of a simple 
heuristic alteration of a TMKL2 agent model and a small library of patterns. 

3.2. Experiment #2 
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The previous experiment was an example of retroactive adaption in which a failure was 
mitigated. In Experiment #2, proactive adaption was attempted to take advantage of a slightly 
altered game rule. In particular, it now takes more gold units for Alice to win a game. Tests were 

run on Alice to see if Alice's model was still valid after the rule change. REM tested if each 
Mechanism's Provides condition satisfies its parent Goal's Makes condition; that is, if 
the Mechanism was capable of accomplishing the new Goal. If one of these tests failed, REM 
then located the responsible Mechanism. In this experiment, REM localized Alice's GainGold 
Organizer. Next, a replacement Organizer was created to achieve the new win condition. 
To do this, REM used an external planning tool, called Graphplan4. REM translated the initial 

game Environment into a Graphplan facts file. Then all Organizers, Operations, and 
game rules were translated into a Graphplan operators file. After pruning out operators with no 
effects, the resulting Graphplan file contained 10 operators. Next, REM ran Graphplan on the 
facts and operators files. Graphplan generated a three-stage plan capable of accomplishing Alice's 
top-level Goal. This plan was then translated back into an Organizer to replace GainGold. 
The lesson learned from this experiment was that for a simple numeric change, a no-longer valid  

TMKL2 Organizer can be located and adapted using an external planner. 

3.3. Experiment #3 

The first experiment described above was off-line in the sense that the adaptations were made 

after a game was completed. Experiment #3 is an on-line adaption in that Alice is changed while 
she is running. Moreover, her opponent, Barbra is also adapted during the game. In this 
experiment, both Alice and Barbra were reconfigured into two parts, one allopoietic and the other 
autopoietic. These term are borrowed from the literature of self-organizing systems and denote, 
respectively, the part of a system that changes and the part that does the changing. Alice's 
allopoietic part used a parameter, alpha, to determine how Alice should allocate her resources 

between obtaining gold or producing warriors. The autopoietic part of Alice adapted the 
allopoietic part by adjusting alpha to produce gold only if she had sufficient defensive capability 
to fend off Barbra's visible attackers. Similarly Barbra's allopoietic part used a parameter, beta, to 
determine the number of warriors with which to attack Alice's city. The autopoietic part of Barbra 
adapts the allopoietic part by adjusting the number of warriors Barbra attacks Alice. For both 
agents, the autopoietic part was itself a (meta-) agent. In particular, the meta-agent's 

Environment consisted of a description of the allopoietic part, including Goals, 
Mechanisms and (allopoietic) Environment. By monitoring game status, the meta-agent 
could make appropriate adjustments to the base agent's parameter by executing (meta) 
Operations. Running Alice versus Barbra resulted in the agents engaging in an arms race. 
Eventually Alice was able to defeat Barbra. In winning, Alice collected 186 gold units, Barbra 
had 6 dead warriors, Alice had 3 live warriors and never lost a battle. Barbra adapted herself 4 

times, and Alice adapted herself 6 times. The lesson learned was that TMKL2 models allow for 
simple real-time adaptations by using meta Operations to control the agent strategy. 

4. Discussion and Future Work 

The GAIA development environment provides infrastructure enabling exploration of teleological 
modeling and reasoning over goals and the means to realize them. The experiments conducted so 

                                                 
4 http://www.cs.cmu.edu/~avrim/graphplan.html 
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far have been a limited proof of concept. As such, many questions have been raised and future 
topics for research suggested. 
• Language extensions: TMKL2 as described is limited to one Mechanism for each Goal. 

Alternative, possibly concurrent, Mechanisms and the reasoning necessary to choose 
among them might be provided. Also, as currently designed, TMKL2 is primarily aimed at 
expressing achievement Goals. The addition of invariants, along with augmenting REM to 
directly support truth maintenance, would extend GAIA modeling range. Much more 
ambitious is the ability to deal with non-functional concerns, such as performance. 

• Game design: In addition to FreeCiv, we have used GAIA with several other games. For 

example, we have built an agent model to play TicTacToe and a TicTacToe game server. We 
then watch GAIA adapt the agent to play variants, such as misère (play to lose) and allowing 
players to use either X or O on any move. We have added some abilities to GAIA to support 
the designer in specifying game server APIs and generating stub Operations. 
Nevertheless, adding a new game still requires significant work on the part of the designer. 

• Adaptations: The experiments described above illustrate but a few of the many kinds of 

adaptations imaginable. We have cataloged about a dozen such adaptation types, but the list is 
ad hoc. What is lacking is a unifying framework for them using which REM could specialize 
its adaptation capabilities. Also, the framework would enable a more systematic compilation 
of adaptation patterns. 

• Reasoning: As it exists, GAIA makes use of PowerLoom, which is a truth maintenance 
reasoner. As described above, we have also hooked GraphPlan into GAIA, albeit on an ad 

hoc basis. The question then remains as to what reasoning capabilities are required by 
teleological and specifically adaptive questions. Among the possibilities are machine learning 
for better localizing failures from execution logs. Needed also are specialized capabilities for 
determining what existing Mechanism might best be applied (or adapted) to realize a 
modified Goal, and how to formulate a high-level Mechanism that combines existing low-
level Mechanisms. 

• Meta-Reasoning: Experiment #3, described above, was a very simple example of meta-
reasoning, amounting to just parameter tweaking. Nevertheless, the generality of TMKL2’s 
modeling capabilities are such that much more general schemes are possible. In particular, 
imagine a (meta-)agent formulated to deal with specific adaptation opportunities, including 
detection, localization, etc. That is, the process by which the experimenter designed 
Experiment #3’s meta-agent could itself be coded in TMKL2 to deal with this particular class 

of adaptations. 
• Evaluation: The experiments described above do not constitute a thorough evaluation of 

GAIA. Such a study would explore a variety of further questions such as: How robust is 
TMKL2 in dealing with different games? What is the relationship between class of adaption 
and required reasoning power? Important also are issues such as reasoning performance and 
usability of GAIA as a design environment. Ultimately, the key question will be the extent to 

which our approach to teleology, as manifest in the tight connection between Goals and 
Mechanisms, can address the general problem of adaptation. 

5. Related Research 

In this summary paper, we will only briefly cover closely related research; our technical papers 
cover related research in more detail. Our work perhaps is most directly related to research on 
meta-reasoning (Cox & Raja 2011). Much of the research on meta-reasoning for self-adaptation 
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has used self-models of agents that help localize modifications to the agent design, e.g., 
(Anderson et al., 2006; Fox & Leake 2001; Jones & Goel 2012; Murdock & Goel 2008). We can 
trace several themes in model-based self-adaptation in intelligent agents. For example, self-

adaptations can be retrospective, (Anderson et al. 2006; Fox & Leake 2001; Jones & Goel 2012), 
i.e., after the agent has executed an action in the world and received some feedback on the result, 
or proactive (Murdock & Goel 2008), i.e., when the agent is given a new goal similar and related 
to but different from its original goal. As another example, self-adaptations may pertain to 
domain knowledge (e.g., Fox & Leake 2001; Jones & Goel 2012) or reasoning processes 
(Anderson et al. 2006; Murdock & Goel 2008). The GAIA architecture supports both kinds of 

adaptations. 
 Our earlier research on model-based reflection and self-adaptation (Murdock 2008) suggested 
that (1) goal-based models of intelligent agents that captures the teleology of the agent design can 
help localize the changes to the agent design needed for classes of adaptations, and (2) 
hierarchical organization of the goal-based models of the agent designs helped make the above 
localization efficient. The work reported here extends earlier work on self-adaptation in two 

ways. Firstly, the agent specification language TMKL2 has a better defined syntax and semantics 
than its predecessor TMKL (Murdock & Goel 2008). This adds clarity, precision and rigor. While 
many agent specification languages specify the goals, mechanisms, structure and domain 
knowledge of agents, TMKL2 explicitly organizes the agent’s mechanisms and domain 
knowledge around its goals. Together, the goals and the mechanisms that achieve them specify 
the teleology of the agent’s design. Goel & Rugaber (2014) describe GAIA in more detail. 

6. Conclusions 

While much of earlier work on model-based reflection and self-adaptation pertained to agents that 
operated in small, fully-observable, deterministic, and largely static worlds, GAIA operates in 

large, complex, dynamic, partially observable and non-deterministic worlds such as Freeciv. The 
experiments in self-adaptation described here cover a small range of retrospective and proactive 
agent adaptations. They demonstrate that (i) it is possible in principle to design game-playing 
agents so that their teleology can be captured, specified and inspected, (ii) the specification of the 
teleology of the agent’s design enables localization of modifications needed for the three 
experiments in self-adaptation, and (iii) this self-adaption in turn enables the agent to play an 

interactive game, monitor its behavior, adapt itself, play the game again, and so on. 
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